Fixed-point arithmetic — In computing, a fixed point number representation is a real data type for a number that has a fixed number of digits after (and sometimes also before) the radix point ( e.g. , after the decimal point . in English decimal notation). Fixed point… … Wikipedia
Fixed point (mathematics) — Not to be confused with a stationary point where f (x) = 0. A function with three fixed points In mathematics, a fixed point (sometimes shortened to fixpoint, also known as an invariant point) of a function is a point[1] that is … Wikipedia
Fixed point theorem — In mathematics, a fixed point theorem is a result saying that a function F will have at least one fixed point (a point x for which F ( x ) = x ), under some conditions on F that can be stated in general terms. Results of this kind are amongst the … Wikipedia
Fixed-point lemma for normal functions — The fixed point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. Background and formal… … Wikipedia
Caristi fixed point theorem — In mathematics, the Caristi fixed point theorem (also known as the Caristi Kirk fixed point theorem) generalizes the Banach fixed point theorem for maps of a complete metric space into itself. Caristi s fixed point theorem is a variation of the… … Wikipedia
Atiyah–Bott fixed-point theorem — In mathematics, the Atiyah–Bott fixed point theorem, proven by Michael Atiyah and Raoul Bott in the 1960s, is a general form of the Lefschetz fixed point theorem for smooth manifolds M , which uses an elliptic complex on M . This is a system of… … Wikipedia
Banach fixed-point theorem — In mathematics, the Banach fixed point theorem (also known as the contraction mapping theorem or contraction mapping principle) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of… … Wikipedia
Kakutani fixed point theorem — In mathematical analysis, the Kakutani fixed point theorem is a fixed point theorem for set valued functions. It provides sufficient conditions for a set valued function defined on a convex, compact subset of a Euclidean space to have a fixed… … Wikipedia
Banach fixed point theorem — The Banach fixed point theorem (also known as the contraction mapping theorem or contraction mapping principle) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self maps… … Wikipedia
Ryll-Nardzewski fixed point theorem — In functional analysis, the Ryll Nardzewski fixed point theorem states that if E is a normed vector space and K is a nonempty convex subset of E which is compact under the weak topology, then every group (or equivalently: every semigroup) of… … Wikipedia
Schauder fixed point theorem — The Schauder fixed point theorem is an extension of the Brouwer fixed point theorem to topological vector spaces such as Banach spaces. It asserts that if K is a compact, convex subset of a topological vector space and T is a continuous mapping… … Wikipedia